

Chapter 3

System Design

http://www.sciencepublishinggroup.com 27

3.1 System Definition and Specifications

Based on referenced research works, the definition of what a stimulation

system should be and how should it be implemented was achieved, in order to

cover particle manipulation tests and procedures over a wide range of

applications. Research areas include:

Frequency range: Based on the state of the art in particle manipulation,

define and justify a frequency range eligible for a wide range of applications in

manipulation procedures and tests.

Frequency synthesis methodology: Explore existing implementations,

examine their applicability to this work and decide if the output frequency to

system clock ratio can be achieved with them or if a novel methodology is

needed to generate data for single and superimposed frequencies.

System design: Explore the design options for the system in this work and

justify the selection, from logic-only, programmable array based, and processor

based implementation.

Optimization and modularity: Analyze the trade-offs of the selected design

scheme about performance (output frequency to clock frequency ratio), circuit

size, and power consumption considering portable applications as the target.

Explore the trends on intelligent systems about modularity, re-usability,

integration and interconnection capabilities. Explore the core-based design

methodology.

Integrated Circuit Design Using Open Cores and Design Tools

28 http://www.sciencepublishinggroup.com

Configurability: Define and justify the parameters that should be open and

configurable in order to obtain an electric stimulation system that covers the

majority of electro-kinetically driven micro-fluidic devices.

Prototype implementation: Define a feasible prototype hardware

implementation to run the application program so functional specifications and

frequency synthesis methodology can be evaluated.

3.1.1 Motivation

Existing systems for manipulation and separation of particles depend on

previously known information about the type of target particles or by

experimenting on them; such experiments consist of controlling and changing

or repeating electrical stimulation, analyzing response and sweeping signal

parameters until desired results are achieved. An automated, programmable,

configurable system is needed where reliable stimulation is needed for efficient

and faster advances on research work about particle manipulation. Advantages

of an automated, programmable, intelligent manipulation system:

• Multiple tests can be done and repeated by programming test sequences.

• Previously programmed test parameters for a known test sequence can be

stored, accessed, and repeated.

• More reliable data results are obtained due to precise reproduction of test

parameters.

• User interface allows rapidly configuring and operating the system for

new tests and procedures.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 29

• An intelligent design targets future Lab-on-chip implementations and

portable Lab devices.

• A programmable system allows to run original application or to load a

new one.

• A scalable design provides interconnection and communication channels

so it can be integrated to other systems.

3.1.2 Statement of the Problem

There are current problems and limitations in particle manipulation

procedures and research works, so present needs should be detected and solved;

overcoming the state of the art and anticipate for future needs in stimulation

systems would allow researchers to speed up experiments and results.

The trends show that experiments need more controlled testing environments

by using more complex electric stimulation, which only programmable systems

can deliver, like signal composition, dual frequency signals, traveling wave fields,

mixing sine with square and triangle signals, and what may come in the future.

Besides, if frequency range of output signals could cover a wide spectrum of

particle types, sizes, and shapes, research work would be more efficient and

might reveal results from previously unknown experimental circumstances.

Last but not least, current implementation schemes for digital frequency

systems should take as primary goals a low power, minimum size, and high

performance design.

Integrated Circuit Design Using Open Cores and Design Tools

30 http://www.sciencepublishinggroup.com

Figure 3.1 illustrates how the research work in all the related disciplines and

the corresponding tasks lead to specific outcomes and contributions of this work

in each of the four related research areas: the effect of electric fields in

electro-kinetically driven fluidic devices, frequency synthesis methodologies,

Lab-on-Chip systems, and System-on-Chip design.

Figure 3.1 Performed tasks, achieved outcomes and contributions made

in the four research areas.

The overall goal is to specify, define, design, and implement an open

processor-based system that allows users from different areas to configure and

automate their tests over a specific target particles or cells to obtain reliable and

repeatable results in order to achieve the desired mobility effect. It is also

desirable to have configurable system variables and test parameters that can be

selected or programmed before the experiment or test is executed.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 31

3.1.3 Proposed System

This work presents a processor-based stimulation system to generate signals

and configurable tests for stimulation of micro-fluidic devices. It delivers multiple

waveforms and patterns to cover a wide range of experiments and applications.

Specific tests or sequence of tests that should be made on specific particles

may not be known by publication time since this is a developing area, so this

system is designed to be configurable and to deliver a variety of signal patterns

and combinations within a frequency range. The design consists of a set of cores

integrated as a System-on-Chip (SoC) to configure, operate, and execute a

stimulation system which delivers desired data.

This stimulation system includes user interface capabilities for configuration

and operation, a memory system to upload and contain the application software

for frequency synthesis, a processor to execute the program, and output ports to

deliver data from synthesized frequency as shown in Figure 3.2.

Figure 3.2 Proposed systems.

This system is also designed to favor an easy integration to existing or

on-going designs of Lab on a chip: it provides input/output Wishbone buses for

data and instructions so the system can be application independent by using a

Integrated Circuit Design Using Open Cores and Design Tools

32 http://www.sciencepublishinggroup.com

ROM based Bios that loads the selected application software depending on the

desired use. Existing or proposed Lab-on-chip systems to be connected to this

stimulation system, which is using another standard communication bus like

AMBA, can use a converting bridge for interconnection without changing the

current design.

One of the possible implementations presented, shows how a different

application program can be uploaded before operation, so modifications and

additions to the program can be made and tested outside the system and later

uploaded to an in-chip memory for operation. This capability, besides making the

system adaptable to future applications, makes possible its integration to existing

systems.

The user interface allows configuring the system, select mode of operation,

select desired type of signal, selecting single or superimposed frequencies, and

visualizing data being delivered. User interface interacts with the system via a

standard serial port.

The memory system consists of a ROM to contain the boot-loader which

uploads the application software at the beginning of operation and Harvard

architecture of RAM to contain the program and the data for operation. The

processor selected for the SoC design, the OR1200, is the best option from the

available open source cores, and its corresponding instruction set covers the

needs for this application software.

The on-chip communication is achieved using the Wishbone bus, which is

the standard bus for open source cores, and allows a smooth integration of all

the components in the system. Two Wishbone buses, one for data and one for

instruction, are taken outside the chip so it can be integrated to other systems.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 33

The hardware architecture for the chip is oriented to low power, low area, and

low execution times, and by using open source cores this is a design that can be

completed with no licensing cost during design and fabrication stages.

The application software implements the novel frequency synthesis

methodology designed during this work, so it optimizes hardware resources

such as memory map, instruction set, and system clock, in order to achieve

maximum output-frequency/system-clock rate in output signals. The software

can be tested on development boards based on the same or similar processor.

This system is also designed on a modular basis so it can be integrated, as is,

into Lab-on-Chip systems or by adding new driver cores and the application

software is designed in an open-source style so it can be configured or extended

for future applications.

3.1.4 Frequency Synthesis

The novel frequency synthesis methodology developed for this system

integrates the advantages of both, memory intensive and computation intensive

approaches into one new synthesis methodology while keeping a low

implementation area, low power, and high performance design.

For this system a look-up table is used to store base sine sampled data for a

complete sine cycle. As any digital design the best tradeoff between hardware

and software implementation should be selected: hardware is used for data

storage and software for data processing computation. A software implemented

algorithm is defined to select data from look-up table for target frequencies and

store it in temporary tables; process data from temporary tables to get single or

dual frequency data samples, and store them in output buffer tables.

Integrated Circuit Design Using Open Cores and Design Tools

34 http://www.sciencepublishinggroup.com

Finally, and most important, a computation-free algorithm loads data from

output buffer table and stores it in one or more output ports depending on the

operation mode. An external conditioning circuitry including a DAC, a current

to voltage converter and a voltage amplifier converts sampled data into the

finally delivered analog signal.

3.1.5 Comprehensive System

As state of the art, research shows highly controlled experiment environments

can be achieved when using more complex stimulation, so this system needs to

deliver configurable multi-waveform, dual-frequency signals to speed-up

research work on multi-particle manipulation tests. The system architecture has

the foundation for control purposes, data storage and signal processing; it can be

customized to achieve particular control and operation purposes of stimulation

systems.

The mix of single-frequency signal generation along with signal

superposition and system configuration capabilities, allows a wide control range

on stimulation tests. Besides, with minimal modifications other waveforms and

patterns can be obtained. A frequency range sweep can be run as a sequence of

several user selected exposure times to analyze results under several stimulation

conditions on the same experiment.

Execution times are lowered to its minimum so maximum output frequency is

dependent only on the processor specification. Besides, a size optimized routine

does not change for different generation modes or for different waveforms, so

memory usage is kept at a minimum regardless the operation mode.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 35

Memory architecture is designed for minimum area: data samples for sine,

triangle and saw tooth waveforms are stored in base data tables using them,

temporary tables are constructed based on selected output frequency and desired

number of voltage steps; output or buffer tables are finally calculated after a

time match operation depending of the number of channels to be updated

simultaneously.

Data pre-processing and table preparation reduces computation instructions

during signal generation achieving maximum output frequency to clock

frequency ratio. The system can generate any periodic waveform as long as it is

stored in memory data tables.

For signal updating, multiple simultaneous writes to output port are made so no

loss in output frequency occurs when two or more signals are being delivered

simultaneously. This port partitioning scheme is particularly convenient for this

application.

The proposed system combines efficient use of hardware and software

resources: minimum generation code, no computation during synthesis, and

minimum memory access times.

3.1.6 Scope and Limitations

About research, the commitment is to review the state of the art on the four

areas mentioned to identify the common ground for electric stimulation of

fluidic devices, to keep-up with trends, and to anticipate to future stimulation

needs. About new developments the challenge is to deliver a flexible and

programmable system which runs a novel signal generation methodology and to

prove its functionality.

Integrated Circuit Design Using Open Cores and Design Tools

36 http://www.sciencepublishinggroup.com

About system design: the goal is to identify the system requirements, to

define its functional specifications, for System-on-Chip -standard functionality

version- and for development board -extended functionality version-, and to use

available software and hardware resources to implement the design.

Limitations are related to time and to available resources: time because

design decisions for this system are made based on what current research work

shows and what can be identified as a trend; and resources are related to budget

dependencies and access to licensed or open CAD tools to achieve the intended

design.

Implementation on development board is limited to available processor,

instruction set and communication ports specifications for that board. For chip

implementation, system specifications like circuit area, power consumption and

maximum output frequency are defined and limited by three factors: fabrication

technology, physical libraries available, and efficiency of application software;

the first two are resources dependent and the third is designer dependent.

Signal waveforms to be delivered are sine, triangle, and square and saw tooth

wave. For dual superimposed frequencies the ratio between frequencies define

the memory size needed for temporary and buffer tables: if frequencies are not

exact multiples a hyper-cycle for resulting signal is not possible or very large,

and that leads to unfeasible, large or infinite, memory needs.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 37

3.2 Software Architecture

Figure 3.3 System-on-Chip block diagram for the platform based design.

The hardware architecture of the SoC is a platform and bus based architecture;

it uses a selected set of open source cores and the Wishbone on-chip

communication bus. The selection of the OR1200 processor is selected due to

its previously demonstrated implementations in FPGAs and to its open

instruction set. The on-chip memory array may contain the application software

developed specifically for stimulating fluidic devices or a boot-loader to up-load

different applications. In chip data, memory contains a complete cycle of the

three base waveforms in 256 samples of 8-bit data each. A UART port is used

to configure operation, to program sequence tests, to control operation and to

visualize data during execution. The four 8-bit GPIO ports deliver processed

data points for output signals, which may be, according to selection made in

configuration: sine, triangle, or saw tooth and presenting single, dual or

superimposed frequencies. Figure 3.3 shows interconnection between in-chip

blocks; processor and Bus Interface Units connect directly to Wishbone

Integrated Circuit Design Using Open Cores and Design Tools

38 http://www.sciencepublishinggroup.com

instruction and data buses, and memories peripherals connect via wrappers.

Table 3.1 details the function of each primary block in the SoC.

Table 3.1 Function description for primary system blocks.

Element Description

CPU (OR1200)
RISC CPU, Harvard architecture, cache memory for data and instructions, operates at

250 MHz max using 180 nm standard cells TSMC technology.

Wishbone Bus On-chip bus for cache, main memories and interface peripherals

GPIO
Grouped in four I/O 8-bit ports, from open source cores: used as inputs for

configuration and operation, as outputs for data

Clock and Reset
Receives clock from crystal oscillator, generates clock and reset signals for system

operation, base clock for processor blocks and ¼ base clock for Wishbone bus.

UART
Serial port controller provides connection for external configuration and operation

device. Open core source is used.

RAM and ROM
Memory blocks built with Artisan memory generators for verilog, vclef and gdsII

views.

Interrupt controller Exceptions handler from open cores included in OR1200 architecture.

3.2.1 Processor Based Implementation

This particular implementation for the processor was based on the open

source files of the OR1200. The Open RISC 1200 is a synthesizable CPU core

from Open Cores.org; it is a configurable open source Verilog implementation

of the Open RISC 1000 architecture. The OR1200 is intended to be used in a

variety of embedded applications. Some open source software, such as Linux,

has been ported over to the OR1200 platform.

The GNU tool chain, including GCC, has also been ported to the architecture

to aid in software development. The clock cycle for the OR1200 is 250 MHz at

a 0.18 µm, 6ML fabrication process.

Estimated power consumption of this processor running at 250 MHz and

implemented in 0.18µm technology is less than 1W at full throttle.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 39

Available libraries: 180nm from TSMC will be used for this design. System

specifications will meet application software requirements for standard version.

Components: Processor has been selected from available open source cores.

Memories have been obtained through memory generators, Peripherals have

been selected from open source cores.

Design constraints: Constraints are considered in this order: Performance, Area

and Power. Target clock frequency is around 250MHz for an 180nm technology

implementation. Processor area budget is less than 2mm2; on-chip memory area is

less than 3mm2. Power budget for OR1200 processor in this technology is 1W at

full throttle, added blocks should not exceed that by more than 20%.

3.2.2 SoC Components

The OR1200 is a RISC, Harvard Architecture processor with basic DSP

capabilities. As an open source, customizable, core it is not optimized for power

or size. This particular implementation for the processor was based on the open

source files of the OR1200.

The Open RISC 1200 is a synthesizable CPU core from OpenCores.org; it is

a configurable open source Verilog implementation of the Open RISC 1000

architecture.

It specifies a Central CPU/DSP block, Direct mapped data cache, Direct

mapped instruction cache, Data MMU based on hash-based DTLB (Translation

Lookaside Buffer), Instruction MMU based on hash-based ITLB, Power

management unit and power management interface, Tick timer, Debug unit and

development interface, Interrupt controller and interrupt interface, Instruction

and Data WISHBONE interfaces, and a MAC unit. Peripherals and a memory

Integrated Circuit Design Using Open Cores and Design Tools

40 http://www.sciencepublishinggroup.com

subsystem may be added using the implementation of a standardized 32-bit

Wishbone bus interface.

Figure 3.4 OR1200 Architecture.

Figure 3.5 OR1200 internal cores.

The CPU is an implementation of the 32-bit ORBIS32 Instruction Set

Architecture. It has five instruction formats and supports two addressing modes;

it has a single-issue 5-stage pipeline, single cycle execution on most instructions.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 41

It uses a Harvard architecture with separate MMUs for data and instruction

memories, with support for virtual memory, a hash-based 1-way direct-mapped

TLB with page size of 8 KB and a default size of 64 entries, and one-way

direct-mapped D-Cache and I-Cache, 8 KB each.

Table 3.2 Specifications of the OR1200.

Concept Specification

Architecture 32-bit scalar RISC, Harvard

Pipeline 5 stage, 32-bit integer instructions

DSP Basic capabilities

Caches Separate instruction and data, 1-way direct mapped. Configurable to 1, 2, 4, 8KB

Virtual memory 64-entry hash based 1-way direct mapped TLB for data and instruction MMU

Speed
Worst case: 150 dhrystone 2.1 MIPS at 150MHz (typical corner 250MHz)

Best case for 180nm implementation: 300 dhrystone, 2.1MIPS at 300MHz

Size Default configuration about 40K ASIC gates, 1M transistors

RTL status Not optimized for speed or area

Instruction Set
Instruction unit handles only ORBIS32 instruction class. ORFPX32/64 and

ORVDX64 instruction classes are not supported.

Configurable Major characteristics can be set by user (see Core HW configuration table)

Communication bus Wishbone, internal and for SoC interconnection

GPRs
General Purpose Register file is implemented as two synchronous dual-port

memories, 32 words, and 32 bits per word.

Exceptions
Transparent to user software, same mechanism to handle all types of exceptions,

control is transferred to an exception handler. See Exceptions table.

Interrupt controller Direct enabled Int0 and Int1, Masked Int [31:2]

Tick timer Clocked by RISC clock, re-start able, mask interrupt, Max count 2^32

Power management Dynamically activated modes: slow and idle, Doze, Sleep, and Clock gating

Debug unit Basic debugging; No watch points, break points or program flow control registers.

Clock & Reset

Core has several clock inputs: clk_cpu, clk_dc, clk_ic, clk_dmmu, clk_immu,

clk_tt; all clocks must be in phase and as low skew as possible. Reset signal rest

reset all flip flops when asserted high; when not asserted reset exception start.

Wishbone interface
Rev. B compliant, 32-bit bus width may connect to external peripherals and

external memory subsystem.

Integrated Circuit Design Using Open Cores and Design Tools

42 http://www.sciencepublishinggroup.com

Table 3.2 and 3.3 summarizes the specifications of the OR1200 selected for

the design; Figures 3.4 and 3.5 shows the processor architecture.

Table 3.3 List and description of the processor cores and the

peripherals for the System-on-Chip.

Core Block description Core Block description

OR1200_alu Arithmetic and Logic Unit OR1200_lsu Load and Storage Unit

OR1200_cfgr Configuration Registers OR1200_mult_mac Multiply and MAC Unit

OR1200_ctrl Control Unit OR1200_operandmuxes Operand Mixes

OR1200_dc_top Data Cache OR1200_pic
Programmable Interrupt

Controller

OR1200_dmmu_top
Data Memory Management

Unit
OR1200_pm Power Management Unit

OR1200_du Debug Unit OR1200_rf Register File

OR1200_except Exceptions Unit OR1200_sb Store Buffer

OR1200_freeze Freeze Unit OR1200_sprs Special Purpose Registers

OR1200_genpc General Program Counter OR1200_tt Tick Timer

OR1200_gpio General Purpose Input Output OR1200_uart
Universal Asynchronous

Rec/Trans

OR1200_ic_top Instruction Cache OR1200_wb_biu Wishbone Bus Interface Unit

OR1200_if Instruction Fetch OR1200_wbmux Wishbone Mux

OR1200_immu_top
Instruction Memory

Management Unit
- -

Communication Bus. The wishbone bus has become the standard

communication bus for the open source cores. It serves as the in-chip bus and as

the interface bus for the SoC with the external world, and as for Harvard

architecture there are separated buses for data and for instructions.

Instruction interface is used to connect OR1200 core to memory subsystem

for purpose of fetching instructions or instruction cache lines. Data interface is

used to connect OR1200 core to external peripherals and memory subsystem for

Chapter 3 System Design

http://www.sciencepublishinggroup.com 43

purpose of reading and writing data or data cache lines. Table 3.4 lists signals

for instruction lines (data lines are named dwb_xxx).

Table 3.4 The Wishbone instruction bus.

Signal Width I/O Description

iwb_CLK_I 1 I Clock input

iwb_RST_I 1 I Reset input

iwb_CYC_O 1 O Indicates valid bus cycle (core select)

iwb_ADR_O 32 O Address outputs

iwb_DAT_I 32 I Data inputs

iwb_DAT_O 32 O Data outputs

iwb_SEL_O 4 O Indicates valid bytes of data bus (during valid cycle it must be 0xf)

iwb_ACK_I 1 I Acknowledgment input (normal transaction termination)

iwb_ERR_I 1 I Error acknowledgment input (abnormal transaction termination)

iwb_RTY_I 1 I In OR1200 treated same way as iwb_ERR_I.

iwb_WE_O 1 O Write transaction when asserted high

iwb_STB_O 1 O Indicates valid data transfer cycle

Memory System: As Harvard architecture, Instruction memory and Data

memory are kept separated. Instruction Memory stores the application program

for System configuration, System operation, Frequency Synthesis, and Output

data delivering. Data Memory stores data samples for required waveforms:

look-up tables containing sine, triangle, and saw tooth wave signal data;

Temporary tables for processed data, and Buffer output tables for final processed

data.

Possible implementations are explored: storing application software in on-

chip ROM adds circuit area and restrain functionality to what's stored; loading

application software to RAM using a boot-loader reduces memory area and

allows additions to application software to be made and debugged in

development board before being loaded into the chip.

Integrated Circuit Design Using Open Cores and Design Tools

44 http://www.sciencepublishinggroup.com

A similar concept was developed for waveform data tables: data can be stored

in on-chip ROM with fixed data width and samples per waveform cycle, this

increases in-chip data memory space and reduces flexibility to change data size

and samples per cycle. Otherwise sample data can be modified outside the chip,

as well as the number of data samples per cycle, and then uploaded to RAM

using the boot-loader. This shows the trade-off between fully customized

designs versus a configurable programmable circuit design.

User Interface. A UART port has been selected for system configuration and

operation. It was selected over a USB port since it takes less circuit area and

speed is not important during configuration and operation setting. For extended

interfacing capabilities, Wishbone data and instruction buses have been added,

they can be used for external memory access and to connect this system to

external peripheral systems, drivers or bridges.

User interface functionality has been summarized in Table 3.5 according to

the system configuration and operation needs:

Table 3.5 User interface: primary functions.

Function Description

Load Load application software from available selections

Select Define waveform to be used for next experiment

Configure
Select waveform, samples per cycle, output frequencies, operation mode, and exposure time for

signal generation.

Operate
Start signal generation disabling other functionalities to maximize output frequency. Keep

continuous operation until exposure time finishes or stop request is received.

Monitor
Displays feedback info from operation and data being sent to output port. This function can be

disabled to eliminate execution time for monitoring and maximize output frequency.

Output Ports: Parallel ports have been used as output channels: a 32 bit

(4x8 bit) GPIO port is used to deliver output data. Standard data is 8 bit wide,

so up to four channels are available. Output data is delivered in one of this

Chapter 3 System Design

http://www.sciencepublishinggroup.com 45

forms depending on operation mode: in mode 1, 8-bit data samples containing

one single frequency are delivered; in mode 2, 16-bit data samples containing

two separate frequencies are delivered in two 8-bit channels, 8-bit each; in

mode 3, 8-bit data samples containing two superimposed frequencies are

delivered in one 8-bit channel.

3.3 Challenges for Variable Optimization

Here are shown the major challenges to be faced in the definition and design

stages of the system; also is presented the decision to be analyzed and justified

at each concept.

To obtain the maximum output frequency from a base operation frequency on

the value you need. Variable optimization: processor selection, design and

fabrication models availability.

1. To minimize execution code when in signal generation routine, so nominal

output frequency is not reduced. Decision: Base data tables storage scheme,

output memory buffer use, only one executing thread when running signal

generation.

2. To define a data selection algorithm for waveform construction to reduce

harmonic addition. Decision: Define an algorithm to select a set of data

that minimizes gap between voltage steps.

3. To optimize code for minimum execution time on procedures like:

• Select data from tables. Variable optimization: Equally time separated

data or equally voltage separated data for harmonic reduction.

Integrated Circuit Design Using Open Cores and Design Tools

46 http://www.sciencepublishinggroup.com

• Addressing memory and load data from memory. Decision: schemes for

storing and addressing original waveform data, in cache or external

memory.

• Buffer memory table construction. Variable optimization: separate,

continuous, adjacent or superimposed memory segments when

generating more than 1 signal, to reduce access times and maximize

output frequency.

4. To keep power consumption low. Variable optimization: Consider the

system as a whole or by operating mode, since most of the time the system

will be in stand-by or configuring mode.

• Software related consumption. Application routines should be minimized

on code size and execution time, in all operating modes: stand-by mode,

configuring mode, pre-processing mode, and signal generation mode.

• Hardware related consumption. Determine power consumption for:

• Processor, in all operating modes.

• Memory, in read and write access.

• For every core include activity factor in power estimation.

3.4 System-on-Chip Specifications

The bus based architecture has been defined, and four implementation options

have been explored, in order to compare performance and circuit size for each of

those implementations. Since main impact in circuit area is due to instruction and

data memory, this has been the parameter to be set first, keeping the configurable

Chapter 3 System Design

http://www.sciencepublishinggroup.com 47

and programmable capabilities in focus. Option 4 from Table 3.6 has been

selected for the SoC implementation; for the development board implementation

there were less memory restrictions and load-store-execute flow was defined by

software development tools.

1. Parameters:

• Instruction and Data Cache size: 2 K-bytes blocks, up to 8 K-bytes total.

• Instruction on-chip RAM: 2 K-bytes blocks, up to 8 K-bytes total.

• Instruction on-chip ROM: 256 bytes for boot-loader or 2 K-bytes

blocks, up to 8 K-bytes total for on-chip application.

2. Application Software functionality.

• Standard implementation on SoC. Program size < 4Kb. Data size < 1Kb.

Output data: two output channels; Operation: resolution from coarse

8bit data. Output patterns: sine, triangle and saw tooth for single or

superimposed frequencies.

• Extended implementation on development board. Program size < 8Kb.

Data size < 4Kb. Number of output channels is board dependent.

Output patterns: sinusoidal, triangle, and saw tooth, for single or any

mix of two superimposed waveforms of different frequencies. A

sequence of user defined test with different time exposure.

3. Variables

• Circuit Area.

• Processor area: ALU, Registers, MMU, Exceptions, Control.

Integrated Circuit Design Using Open Cores and Design Tools

48 http://www.sciencepublishinggroup.com

• On-chip memory area: Instruction and Data RAM, Instruction ROM.

• Total chip area: processor, memories, peripherals.

4. Performance

• Pre- processing times: time to store processed and buffer data tables.

• Execution times: for each functional module in application.

• Time between samples: maximum time between stores to GPIO port,

minimum output frequency.

5. Hardware configurations. The way to load and store application software,

along with the selected functionality for it, can fit into several architectures.

Application software can be stored and modified on external flash or

EEPROM memory, and loaded into in-chip RAM using a small boot-loader.

6. Possible implementations: select block size for Instruction cache memory,

Data RAM, and ROM.

7. Operation Flow. Application software may be stored in on-chip ROM

with no further modification or debugging capabilities after fabrication, or

stored in external memory for debugging, modifications, and up-grade test

in development board, to be loaded into chip during boot-load. A top-level

operation flow is shown in Table 3.6 for four possible implementations.

Table 3.6 Possible implementations, shown at top-level operation.

Application Software stored

in in-chip ROM

Application Software loaded

from external Flash

In-chip RAM

size is

smaller than

application

software size

Option 1

Go to program Start instruction.

Load pre-processing program from in-chip

ROM into I Cache.

Option 3

Start boot loader.

Load external pre-processing program into in-

chip RAM.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 49

Application Software stored

in in-chip ROM

Application Software loaded

from external Flash

Read operation parameters from interface.

Load data from in-chip ROM into D

Cache.

Generate and store temporary and buffer

data tables in D Cache.

Load data generating program from in-chip

ROM into I Cache.

Store data in buffer tables from D Cache to

output port.

Read operation parameters from interface.

Load external data into in-chip RAM.

Generate and store temporary and buffer data

tables in D Cache.

Load external data generating program into in-

chip RAM.

Generate and store temporary and buffer data

tables in D Cache.

Store data in buffer tables from D Cache to

output port.

In-chip RAM

size is larger

than

application

software size

Option 2

Go to program Start instruction.

Load program from in-chip ROM into I

Cache.

Read operation parameters from interface.

Load data from in-chip ROM into D

Cache.

Generate and store temporary and buffer

data tables in D Cache.

Store data in buffer tables from D Cache to

output port.

Option 4

Start boot loader.

Load external program into in-chip RAM or I

Cache.

Read operation parameters from interface.

Load external data into in-chip RAM or D-

Cache.

Generate and store temporary and buffer data

tables in D Cache.

Store data in buffer tables from D Cache to

output port.

3.5 Signal Generation

A goal of this work is to achieve the maximum output frequency for a given

architecture, processor speed, and memory access times. The key tasks for this

achievement have been: a) data pre-processing, b) the signal generation scheme,

and c) the memory access routine.

The equation for output frequency in the selected waveform is:

0

1
F

tbs spc

Where Fo is the output frequency, tbs is time between samples (the time

between two consecutive data samples to be sent to the output port), and spc is

Integrated Circuit Design Using Open Cores and Design Tools

50 http://www.sciencepublishinggroup.com

the number of samples per cycle (the number of data samples used to build a

complete cycle of the selected waveform).

The value of tbs depends on the system clock cycle and the instructions that

take for the signal generation routine to get a new data sample from the output

table and send it to the output port:

 tbs # of instructions clock period

For example, for a system clock of 100 MHz, using 12 samples per sine cycle,

and a simple load-store routine of 6 instructions, the cycle period would be

1/100E+6 = 10 ns and the Output frequency:

 0

1
1 388

6 10 9 12
F . MHz

E

As can be seen from (3), to get higher frequencies a tradeoff can be made by,

e.g., using fewer samples per waveform cycle, eliminate check-for-stop during

generation or change instruction counting for timer operation.

A precise count for clock cycles between output data samples, and therefore

maximum output frequency, can be calculated after compiling the application

software for the target processor, the OR1200, based on execution cycles per

instruction type shown in Table 3.7.

Table 3.7 Instruction Set Architecture execution times.

Instruction type Cycles to execute

Load 2, if cache hit

Store 1, if cache hit

Integer arithmetic 1

Multiply 3

Compare, logical 1

Rotate, Shift 1

Chapter 3 System Design

http://www.sciencepublishinggroup.com 51

Another way to look at output frequency is to calculate from processor speed

and from cycles per instruction in the signal generation cycle:

min

Cycles between samples
T

Pr ocessor speed

For OR1200 running @ 200MHz:

10
0 05 s

200MHzmin
.

If 10 data samples for the sinusoidal signal are desired, then:

 10 0 05 s 0 5 ssin . .

0

1 1
2

0 4
F MHz

sin . s

Which, according to the ―Nyquist–Shannon sampling theorem‖, states that

perfect reconstruction of a signal is possible when the sampling frequency is

greater than twice the maximum frequency of the signal being sampled. In this

case minimum execution time is 0.05 μs, so the system could generate, at most,

10 MHz signals. At this sampling rate an external filter will be needed to improve

spectral purity.

3.5.1 Frequency Synthesis Methodology

Frequency synthesis has been historically achieved using several analog and

digital approaches. The digital approach favors miniaturization and additional

functionalities such as data storage and data processing. Actual devices which

deliver output signals for a wide frequency range can be found already in wireless

communications, but they are application specific and do not allow additional

http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem

Integrated Circuit Design Using Open Cores and Design Tools

52 http://www.sciencepublishinggroup.com

functions. A variety of signals and patterns have been found to be useful in the

mentioned range of applications, where researchers currently work with manual

procedures using regular equipment as signal generators or oscillators. A more

controlled experiment setting is desired so research results can speed up, and it

can be achieved by having complex electric stimulation and varying signal

parameters such as frequency, waveform, superimposed patterns, etc.

Besides the problem of delivering complex signal patterns, electric stimulation

has to be implemented in a small size device because typical applications demand

portable stimulation and test instruments, our approach integrates frequency

synthesis, with multi-waveform generation, multi-waveform superposition, and

operation configurability, so the implementation can be customized for multiple

applications and processes. Besides, as a modular processor based solution is

implemented, the methodology takes advantage of it by remaining generic and

open to modifications, additions, and upgrades.

At the end, a small, low power implementation was achieved. Original digital

frequency synthesis schemes calculate sine values on the fly (computation

intensive scheme) or access pre-stored values from memory (memory intensive

scheme). None of both schemes are useful by themselves in this system due to

the goal of maximizing output frequency to clock frequency ratio, and to the

memory and speed optimization tradeoffs between both schemes.

For performance optimization in this system the main intention of pre-

processing the base sine data sample is to reduce computation during signal

generation (i.e. while sending processed data to the output port); this way pre-

processing times does not impact maximum output frequency. Computation

intensive versus Memory intensive schemes are shown in Figure 3.6:

Chapter 3 System Design

http://www.sciencepublishinggroup.com 53

Figure 3.6 DDFS: Memory intensive versus Computation intensive methodologies.

3.5.2 Output Data

Available signal waveforms for board implementations are sine, triangle, and

saw tooth. Preprocessing base data into temporary and into output buffer tables

allows application software to do computation intensive tasks before operation

and simple address-load-store operations during signal generation: Data input for

pre-processing algorithm comes from base data samples tables. Selected samples

are extracted by translating temporal spacing into memory spacing to achieve

target signal frequency. Number of data samples per cycle is user defined.

When superimposed frequencies are desired pre-processing is executed twice

with correspondent time-space parameters. Intermediate data is stored in

separate temporary tables for each processed frequency.

Final processed data is stored in one output buffer table for simple access,

low execution times.

Figure 3.7 shows data processing for one single frequency, and 9b for two

single frequency outputs – the last step would be add for superposition and

concatenate for separate frequencies-. See appendix A2 for the complete data

Integrated Circuit Design Using Open Cores and Design Tools

54 http://www.sciencepublishinggroup.com

tables of base waveforms and an example of data processing for superimposing

two frequencies.

Figure 3.7 a) Data processing for one single frequency. b) Data processing for two

single frequency outputs. Last processing step is Add for frequency superposition or

Concatenate for separate frequencies.

3.5.3 Frequency Sweep and Superposition

Preprocessed data from temporary tables are superimposed by time matching

of data samples from both separate frequencies. Data samples are added when

time matches among samples and time holes due to frequency difference is

filled with last data. Output data is stored into buffer tables. If there is no

common factor between frequencies, buffer table size can grow indefinitely.

A set of sequenced tests can be programmed to be executed when

characterization test need to go through a frequency range to identify particle's

properties or behavior. These sequenced tests can sweep a desired frequency

Chapter 3 System Design

http://www.sciencepublishinggroup.com 55

range in user defined steps, for example, a 1 MHz signal is delivered for 30

seconds and a 10 MHz signal is delivered for 60 seconds after the first one, and

so on. This frequency sweeps are useful when the particle's behavior is

unknown or when running a characterization experiment.

3.5.4 Methodology Software Architecture

Application software is developed to perform four main tasks: Define and

store waveform data samples, get configuration and operation parameters from

user, process data to obtain selected output signals, and execute frequency

synthesis to deliver processed output data samples.

Waveform data samples for a complete cycle are pre-calculated and stored as

integer numbers in a 0-255 scale, being 0 the lowest peak value of the

waveform (-V), 127 the mid-value (0), and 255 the highest peak value (+V).

Values are stored in data RAM to reduce ROM needs. For the three stated

waveforms 3 x 256 bytes of data space is needed. As these values are stored into

RAM along with the program code uploading, new data tables with different

waveforms can be included in the source files of the application and the

software architecture remains unchanged.

Configuration and operation parameters are for user to select the type of

waveform desired, the operation mode to be executed, and the time period to

deliver the outputs.

When operation mode users select 1 out of 3: one output signal with one

single frequency, two separate output signals with two different frequencies, or

one output signal with two superimposed frequencies.

Integrated Circuit Design Using Open Cores and Design Tools

56 http://www.sciencepublishinggroup.com

Data processing takes base waveform data to generate a temporary table

containing selected data to form the desired frequency. Temporary tables for

two different frequencies are generated for modes 2 and 3. Temporary tables in

modes 2 and 3 are processed to form one output table containing two separate or

superimposed frequencies. Values for temporary and output tables are stored in

RAM during processing.

Output data delivering, to complete frequency synthesis process, takes data

from processed output table and sends it to output port, using 8 bits for modes 1

and 3, or 16 bits for operation mode 2. Figure 3.8 shows application software

flow:

Application functionality is achieved by independent tasks. Table 3.8

presents function description for detailing software execution.

Table 3.8 Application Software, Function Description.

Function Description

Get operation parameters. Configure

operation.

Gets operation parameters: frequency for output signals,

samples per cycle, operation mode

Generate data samples for waveforms Calculates and stores base sine data into memory table.

Calculate time and space between samples

to construct desired frequency, mode 1.

Calculates time and space intervals to extract data from base

table to construct one desired frequency.

Mode 1: generate output table for selected

frequency

Process data from base table and store into temporary table.

Calculate time and space between samples

for two frequencies, modes 2 and 3.

Calculates time and space intervals to extract data from base

table to construct two different desired frequencies.

Modes 2 and 3: generate separate

temporary tables for each frequency

Process data from base table and store into two separate

temporary tables.

Mode 2: generate output table for selected

concatenated frequencies

Process data from temporary table and store into one output

table containing two frequencies in two separate signals.

Mode 3: generate output table for selected

superimposed frequencies

Process data from base table and store into one output table

containing two frequencies in one signal.

Send data from output table to output port Take processed data from output table and store it into output

port. 8 bits for modes 1 and 3, 16 bits for mode 2.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 57

Function Description

Format data to 8 bits in base waveform

tables

Scale base sine data from -1 to 1 to 0-255 (8bits).

Continuous cycle of signal generation Deliver output data continuously until stop requested or

sequence time finished.

Non-multiple frequencies protection Eliminates remaining cycle data for superimposed frequencies

when no hyper-cycle is possible.

Variable size protection during data

processing

Scale to 8 bits intermediate data resulting from operations to fit

temporary and output tables.

Transmit output data for record and re-use Transmit delivered data to serial port to be displayed or stored

by user interface for visualization, record,, or future use.

Scale data, modes 1 and 3 Scale output data in modes 1 and 3 to 8 bits

Scale data, mode 2 Scale output data in mode 2 to 16 bits

Figure 3.8 Application Software Flow.

Integrated Circuit Design Using Open Cores and Design Tools

58 http://www.sciencepublishinggroup.com

3.6 ASIC Design Flow

In this section are presented a description of the design methodology, the

CAD tools used in the chip design flow, and the procedures and results on the

clusters involved in the design: synthesis, timing, memory blocks generation,

place and route of the system cores, power consumption analysis, IO ring

design, and integration at chip level.

3.6.1 Design Methodology

Figure 3.9 Chip design flow on four areas: Timing, Power, IO pins, Area.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 59

Open source cores have been used to integrate a modular architecture over an

open source bus. The design flow has been followed for optimal performance,

minimum chip area and minimum power consumption, in that priority order

when a compromise was needed. Work on all the areas relevant to physical

design has been done: timing optimization, power estimation and grid design,

IO pin selection and ring design, block placement and pin optimization for

routing, and layout generation for minimal area.

3.6.2 CAD Tools

During the design flow, CAD tools have been used and the design process is

not seamless due, mostly, to input-output file formats and compatibility between

tools. As a reference, a tutorial on design flow was reviewed. Table 3.9 shows the

tools used for each of the main design tasks. Tasks have been performed

sequentially in the first design steps; in the later design steps they were performed

in parallel and iteratively to work on the trade-offs of the design: chip area, power

consumption, and system timing/performance. Figure 3.9 illustrates the design

flow.

Table 3.9 CAD Tools Used in design flow.

Concept Tasks Tools

Timing

Synthesis process at block level and at processor level.

Set initial time constraints at block level.

Iteratively push timing constraints at block and chip level.

Deliver block and global timing analysis.

Synopsys, Design Compiler (DC)

Place and

Route

Initial area estimations at block level.

Deliver an initial floor plan for routing.

Placement and routing at block level.

Global routing.

Placement optimizations.

Synopsys, Design Compiler (DC)

Synopsys, Integrated Circuit

Compiler (ICC)

Memories

Generate logical and physical views for RAM and ROM

blocks. Generate different aspect ratio implementations for

placement optimization.

Create memory wrappers for integration.

Artisan, Memory Generators

Synopsys, Design Compiler (DC)

Power
Initial power estimations at block level.

Iterative Power Grid Design.

Synopsys, Design Compiler

Synopsys, PrimeTime PX

Integrated Circuit Design Using Open Cores and Design Tools

60 http://www.sciencepublishinggroup.com

Concept Tasks Tools

IO Ring Iterative IO Ring design.
Synopsys, Integrated Circuit

Compiler (ICC)

Clock Clock tree synthesis at chip level.
Synopsys, Integrated Circuit

Compiler (ICC)

Integration

Integrate Power grid to floor plan.

Integrate IO ring to floor plan.

Integrate memory blocks at chip level.

Integrate clock tree at chip level.

Synopsys, Integrated Circuit

Compiler (ICC)

JupiterXT, Synopsys

Verificatio

n
Functional verification at block and processor level Mentor Graphics, ModelSim

3.6.3 Synthesis and Timing

During the synthesis process the local and global timing has been optimized

and initial area and power estimations have been done. Eight rounds of

synthesis have been performed until timing convergence and closure have been

achieved. Synthesis rounds to get minimum slack time, area estimations, and

power estimations have been done with Design Compiler from Synopsys.

Selected processor cores from Open Cores have been used for bus compatibility

and minimum edition of source codes. The available versions of these open

source cores are not optimized for performance or area, so optimization in these

areas have been done during this design process.

A simulation for functionality, at processor level, has been done before

starting synthesis process, using ModelSim from Mentor Graphics.

The tasks performed and the obtained results from the rounds of synthesis were:

Round 0: Estimate initial timing constraints for each core based on gate count,

estimated size and worst case data path.

1st to 4th first rounds: Run synthesis at block level pushing timing constraints;

consider adjacent blocks in data path to push constraints for required arrival

times and arrival times.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 61

5th and 6th rounds: Run synthesis at top level. Identify critical paths. Push

timing constraints on critical paths. Use new version of open core source repeat

from round 5.

7th and final 8th rounds: Update CVS tree (source version control) to match

last rounds. Round 8 was the final round for pushing the block and global

timing constraints.

The global path delay at top level synthesis has been calculated by:

Global path delay= Arrival time + Pass-through + (cycle time – Required

arrival time) + interconnect delay

Where the first three terms depend on both, block level synthesis and top

level synthesis, and the last term depends on floor-plan and time of flight for

metal 3 and metal 4.

Final results show that the minimum clock cycle is the requested 4 ns plus the

worst slack time achieved of -0.978 ns, which leads to a minimum required clock

cycle of 4.978 ns, equivalent to a processor frequency of 200.8 MHz; Figure 3.10

shows the occurrence distribution of the single and double cycle paths in the

architecture, being the ones on the left the worst slack times observed.

Table 3.10 Results from the rounds.

Round Slack Action taken Improvement

1 -7.9ns

2 -6.4ns Iterate timing constraints at block level 1.5ns

3 -4.5ns Consider pin info in constraints 2.1ns

4 -4,3ns

5v1 -2.3ns Push synthesis effort 2ns

5v2 -1.2ns Identify multi-cycle paths 1.5ns

5v3 -0.75ns

6 -1.0ns Source files change -0.25ns

Integrated Circuit Design Using Open Cores and Design Tools

62 http://www.sciencepublishinggroup.com

Round Slack Action taken Improvement

7 -0.82ns Source files change 0.18ns

8 -1.1ns -0.28ns

Final -0.978ns Consider interconnect delay 0.12ns

Figure 3.10 Occurrence distributions of the single and double cycle paths in the

architecture.

Memory blocks.

Memories for this system (instruction cache, data cache, in-chip RAM and

in-chip ROM) have been generated using a Memory Generator tool from

Artisan which takes as input an abstract description of the memory blocks and

produces several memory formats suitable for various tools and purposes. Using

a memory generator instead of synthesizing a memory can optimize speed, for

density and for power, can control the memory blocks aspect ratio for efficient

floor planning, deliver timing and power models for integrate to other design

tools, allow configurable word-write mask and redundancy options.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 63

Memory blocks of 2 K bytes, 4 K bytes and 8 K bytes have been generated to

facilitate block placement and routing in chip.

A set of views can be generated: PostScript data sheet, ASCII data table,

GDSII layout file, LVS netlist, Synopsys model, PrimeTime models, TLF models,

VCLEF footprint, Verilog model, and VHDL model. The Relative footprint

shows how the aspect ratio of the memory changes as the words, bits, and Mux

parameters are varied. The instance and the power ring are included in the

footprint.

RAM architecture, timing specifications, and physical characteristics:

1. Synchronous Random Access Memory is triggered by the CLK rising edge.

2. Pins: CLK, CEN, WEN, OEN, A[m-1:0], D[n-1:0], output Q [n-1:0].

3. Memory blocks are cut in symmetrical sides to easy clock distribution and

layout.

4. Dual port memories provide dual ports for all, input and output signals.

5. Power rings. Power rings can be generated around the SRAM, size them

properly. Size depends on the chip-level power distribution, the number,

width, and placement of supply wire connections to the power rings, and

the current consumption. Recommendation: supply current evenly at the

edge of the instance where the pins are located.

6. Top metal layer: metal1 to metal4 are used in the design and blocked for

routing. Layers above m4 can be routed over the memory.

Integrated Circuit Design Using Open Cores and Design Tools

64 http://www.sciencepublishinggroup.com

7. I/O pins are located along the bottom edge of the memory block on any of

the metal layers, and they are large enough to accommodate a

pre-determined on-grid width wire connection.

8. Verification: The views produced by the generator can be verified with

standard tools.

ROM architecture, timing specifications, and physical characteristics:

1. Synchronous Read Only Memory is triggered by the CLK rising edge.

2. Pins: CLK, CEN, A[m-1:0], Q [n-1:0]. If CEN is high then memory is in

standby mode and Q has last data, if CEN is low memory is in read mode

and Q has data from address A.

3. Memory blocks include Row and column decoders, Clock generator,

Memory array and Amplifiers/IO buffers for the outputs.

4. Power rings: multiple, evenly spaced connections have been used from

core Vdd and Vss to the rings around the instance on the side where the I/O

pins are located.

5. I/O pins are located along the bottom edge of the memory block on any of

the metal layers.

6. ROM code File. An Artisan format ROM code file must be provided for

each generated instance.

• Format: Code file contain only 0s and 1s.

• The line number in the file is equivalent to (address-1).

Chapter 3 System Design

http://www.sciencepublishinggroup.com 65

• Each character of a line corresponds to the bits of a word. Character in

column 1 of a line is the most significant bit.

• Address goes from m to 0, bits and columns go from n to 0.

• This file is needed for behavioral or physical views such as Verilog,

VHDL, Tests can, Sunrise, GDSII and LVS Netlist.

Tool Verification. Views and files generated have been verified with Synopsys

Design Compiler.

Before Place and Route, a FRAM view has been created for all memories in

the design by importing the VCLEF and running the Blockage, Pin and Via

(BPV) to create the FRAM.

3.6.4 Place and Route

P&R, the process of placing each individual block within the top level design,

has a major impact in chip area: it must use the area optimized netlist for each

block and use the interconnect area efficiently for routing.

Several iterations for P&R have been made due to changes in synthesis, pin

placement and block aspect ratio impact placement and routing results.

Integrated Circuit Compiler (ICC), from Synopsys, has been used to route

signals within blocks, to place blocks within layout, to route signals between

blocks, and to optimize block and pin placement for optimal routing.

A preliminary floor-plan has been delivered for power grid design. Block

placement re-runs have been made with different aspect ratios for each block,

until better area utilization is achieved.

Integrated Circuit Design Using Open Cores and Design Tools

66 http://www.sciencepublishinggroup.com

About 30% of space is left between blocks for interconnect routing, clock

tree and power grid.

3.6.5 Power Analysis

To estimate and analyze the power consumption for this system, a sequence

of iterative tasks have been performed: estimate each block power using Design

Compiler from Synopsys, include activity factors in power calculations,

calculate Switching Power, Cell Internal Power and Cell Leakage power for

each block, design a power grid using Prime Time PX, and integrate power grid

to routed layout.

Power estimations for individual blocks are made initially from block size and

gate count. Activity factors have been integrated using a code benchmark. Later, a

preliminary floor-plan from ICC has been used as the base for power grid.

Vertical power lines go on M5, Horizontal on M6. No power ring has been

added to ease integration with power in M3 and M4 and to power pins in IO

ring. Power grid includes Vdd, clk, rst and Vss lines, with spacing and widths: 5λ,

2λ, 2λ, 2λ, 2λ, 2λ, 5λ, 2λ respectively. Total spacing between two Vdd will be

22λ, which should be multiple of power grid spacing in M3 and M4 for

interconnection.

Power estimation for each block has remained similar, regardless the changes

in source code occurring during synthesis and integration. Power grid at M5/M6

considers block placement and individual block consumption, while power grid

inside blocks on M3/M4 will be done automatically.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 67

A verification run for obtaining activity factors by block from simulation

instead that from estimations has also been made.

Dependencies for Power IR drop analysis, which is the voltage drop due to

the resistance of interconnects in power network are illustrated:

• Additional code lines at top level are needed for power grid.

• IO ring needs to be hooked up to the top level design.

• All blocks should place their pins only in M3 and M4.

• The IO pads have to be hooked up to the power rail, to get info about

external source of power rails.

• Modules should be power routed in M4 and hooked up to the power grid

using via M4 and M5.

• De-coupling capacitor filler cells must be inserted in empty spaces: within

individual modules and in the full chip level between modules.

• Design Rule Check should be executed after hooking up power routes.

• Design decision to make for each individual block: where to put the power

pins for minimum route to power grid.

Results from final run of power estimation are shown in Table 3.11.

Integrated Circuit Design Using Open Cores and Design Tools

68 http://www.sciencepublishinggroup.com

Table 3.11 Power Consumption Values.

Block Activity *(Net Switching Power + Cell Internal Power) + Cell Leakage power

Block

Activity

Net Switching

Power

Cell Internal

Power

Cell Leakage

Power
Total Power

Weighted

value

alu 0.4 4.8500E−03 6.1020E−03 1.0290E−07 1.1000E−02 4.3809E−03

cfgr 0.02 2.4420E−04 3.0160E−04 1.0400E−08 5.4580E−04 1.0926E−05

ctrl 0.4 1.4490E−03 3.0220E−03 7.0550E−08 4.4710E−03 1.7884E−03

dc_top 0.5 3.0410E−03 5.9600E−02 1.0080E−05 6.2600E−02 3.1330E−02

dmmu_top 0.5 1.2410E−03 9.6630E−03 6.0270E−06 1.0900E−02 5.4580E−03

du 0.01 1.7200E−02 1.9800E−02 6.5830E−07 3.7100E−02 3.7065E−04

except 0.4 3.1590E−03 1.1200E−02 1.9230E−07 1.4300E−02 5.7437E−03

freeze 0.4 2.5380E−05 6.8790E−05 1.9090E−09 9.4170E−05 3.7669E−05

genpc 0.5 3.0450E−03 5.7010E−03 1.2740E−07 8.7470E−03 4.3731E−03

gpio 0.5 7.4720E−04 2.3390E−03 1.9830E−07 3.0860E−03 1.5432E−03

ic_top 0.5 1.3880E−03 5.7500E−02 1.0040E−05 5.8900E−02 2.9454E−02

if 0.5 7.3330E−04 2.2270E−03 3.9420E−08 2.9600E−03 1.4801E−03

immu_top 0.5 2.3510E−03 1.0600E−02 6.0780E−06 1.3000E−02 6.4815E−03

iwb_biu 0.1 7.1960E−04 1.4030E−03 8.6690E−08 2.1220E−03 2.1234E−04

lsu 0.6 5.7150E−03 4.5360E−03 9.4160E−08 1.0300E−02 6.1506E−03

mult_mac 0.1 6.9460E−03 2.8100E−02 5.1140E−07 3.5000E−02 3.5051E−03

operandmux 0.4 2.2710E−03 2.6400E−03 6.4490E−08 4.9110E−03 1.9644E−03

pic 0.01 5.3930E−04 1.1050E−03 3.0240E−08 1.6450E−03 1.6473E−05

pm 0.01 2.3360E−04 4.0410E−04 9.5910E−09 6.3770E−04 6.3865E−06

rf 0.5 2.9220E−03 2.6000E−02 7.3280E−07 2.9000E−02 1.4461E−02

sb 0.2 5.6610E−04 7.5770E−04 1.5890E−08 1.3240E−03 2.6477E−04

sprs 0.02 5.5530E−03 5.2600E−03 1.3510E−07 1.0800E−02 2.1639E−04

tt 0.01 9.8770E−04 1.7000E−03 4.6980E−08 2.6880E−03 2.6923E−05

uart 0.5 4.8040E−04 2.8240E−03 2.8800E−07 3.3050E−03 1.6524E−03

wb_biu 0.1 5.0040E−04 9.5720E−04 4.9520E−08 1.4580E−03 1.4580E−04

wbmux 0.4 2.3900E−03 3.6520E−03 7.5520E−08 6.0420E−03 2.4168E−03

Total

6.9298E−02 2.6746E−01 3.5766E−05 3.3693E−01 1.2349E−01

Chapter 3 System Design

http://www.sciencepublishinggroup.com 69

The power consumed by electronic devices has been on a downward path for

many years as a result of the hard work and creativity of talented engineers.

Despite the obvious gains, the creation of lower power designs continues to be a

major concern of modern engineering. There are two facets to this engineering

problem. One is simply the desire to consume less power; to extend battery life

and to make wall-powered devices cheaper to operate and ecologically

friendlier. The other, perhaps less obvious problem, is that all power consumed

must also be dissipated. Power dissipation has become more difficult as devices

have become more complex yet smaller. Of course, the best way to help the

dissipation problem is to consume less power in the first place. This course

looks at the fundamentals of achieving the low power operation needed with

nearly all of today's leading-edge chip designs.

3.6.6 IO Ring

The Input-Output pad ring on a chip acts as a communication link between

the chip core and the outside world. IO pad ring is a collection of open metal

areas usually located at the periphery of the chip. When a chip is being

packaged a mechanical wire bonder connects the open metal surface of an IO

pad with the corresponding package pin.

The circuit functions of an IO pad ring are listed below:

1. ESD protection – The IO pad ring has diode protection circuitry which

protects the gates connected to the pads from any external electrostatic

discharge.

2. Buffering the output signal – Usually, digital output pads have buffers to

allow driving huge external world capacitances of the order of 30 pF.

Integrated Circuit Design Using Open Cores and Design Tools

70 http://www.sciencepublishinggroup.com

3. Buffer the input signal – Digital input pads can have buffers to isolate the

external input from the signals inside the core chip. A digital input pad can

also have a noise tolerant functionality which removes any noise that might

have coupled to the external input. A Schmitt trigger circuit is used to

perform this function. The circuit generates a cleaner signal, mitigating any

effect that noise might have on the circuit performance. A tradeoff of using

Schmitt trigger circuits is the fact that they are power hungry and are slow.

4. Mixed voltage interface – An IO pad ring usually provides a mixed voltage

interface. The external IO pads are usually running at higher voltage while

the cores chip inside run at a smaller voltage, to minimize power. The IO

pad ring contains Level shifter circuits that perform this function.

Due to the limitation in resolution of the mechanical wire-bonding tool, a

minimum open metal surface area and a minimum pad pitch need has been

maintained. Maintaining a minimum pad pitch resulted in the limitation of the

number of input/output pins possible for a chip to the minimum presented ahead.

Table 3.12 shows the final IO pins for the designed SoC.

Table 3.12 SoC IO Pin List.

Signal From block Signal From block Signal From block

clk_i RISC 250MHz iwb_dat_i(31:0) Wishbone pm_ic_gate_o Power

rst_i RISC rst iwb_cyc_o Wishbone pm_dmmu_gate_o Power

clmode_i RISC clock control iwb_adr_o(31:0) Wishbone pm_immu_gate_o Power

pic_ints_i(3:0) PPIC interrupts iwb_stb_o Wishbone pm_tt_gate_o Power

iwb_clk_i Wishbone iwb_we_o Wishbone pm_wakeup_o Power

iwb_rst_i Wishbone iwb_sel_o Wishbone pm_cpu_gate_o Power

iwb_ack_i Wishbone GPIO(31:0) GPIO pm_1volt_o Power

iwb_err_i Wishbone pm_cpustall_i Power pm_clk_sd_o (3:0) Power

iwb_rty_i Wishbone pm_dc_gate_o Power

Chapter 3 System Design

http://www.sciencepublishinggroup.com 71

The design of the IO ring for this system has been made based on the needed

pins for this specific application and has been integrated later to the complete

and routed layout. These pads are available ready-made in TSMC’s digital IO

pad library. These pads have been piled together in a rectangle to create the pad

ring. The open metal area surface of the pad has a 50um length. The pad length

itself is 70um. To keep sufficient spacing between two metal area surfaces -

where the wire-bonder would come to attach the bonding wires-, a spacer of

10um was inserted between each pad. This increased the pad pitch to 80um.

The input pads were chosen without Schmitt trigger functionality (PDIDGZ)

because Schmitt trigger circuits are power hungry and slower. Only general

purpose IO pads (PRU08SDGZ) had schmitt trigger circuitry inside them. They

also had control enable based input/output configuration functionality. The

output pads were chosen based on the current driving capability required from

the pad. The average current was estimated for the pad assuming a 30pF load

and a 25% rise time at 62.5MHz. Based on the average current calculation for

some of the pads, the average current requirement was 4.8mA. An output pad

(PDO16CGZ) with a current capability of 16mA was therefore chosen to safely

meet the current requirements. 3.11 shows a close up to the physical IO ring.

To find out whether the area was pad limited or core chip limited, a very

conservative area estimate was made by adding the block areas and multiplied it

by double to account for wire routing overheads. The area assuming a square

came out to be 0.583976mm2 (0.7mm x 0.7mm) – which denoted severely pad

limited die size.

Integrated Circuit Design Using Open Cores and Design Tools

72 http://www.sciencepublishinggroup.com

Figure 3.11 Close-up view of the IO pad ring, pad pitch is 80nm.

Number of Vdd - Vss pair pin calculation:

There are two power supply voltages on the chip. The first is 3.3V volt which

is used for input/output signals from the external world to the IO pads. The

other voltage is 1.8V which is the Vdd for the core chip. The IO pad ring

performs the task of converting the voltage levels.

An adequate amount of Vdd - Vss pins is needed to allow sufficient current

source and sink-in capability. The more the number of IO pads the larger the

number of Vdd - Vss pins. For this design a 3.3V Vdd - Vss pair for every 8 IO pins

was chosen. While two 1.8V Vdd - Vss pairs were placed on each side of the die.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 73

There are more 3.3V Vdd - Vss pairs due to the amount of power dissipation of

the IO pads needed to drive the external 30pF buffers. The core chip itself

requires less power so fewer IO pins were dedicated to it.

3.6.7 Clock Tree Synthesis

Clock tree synthesis (CTS) is a separate design process which consists on

building a balanced buffer tree from clock input pin to all clock sinks in the

design blocks.

Clock design includes clock generation, clock regeneration and clock

distribution. Tree design, leafs, sinks and location have been set according to

this chip needs. The input files needed for the clock design are top level DEF

file and top level Verilog net-lists.

To do clock tree synthesis SOC Encounter from Cadence has been used.

When starting from a placed net-list, the flow is to perform CTS, do global

routing and block level routing.

Clock Tree design is critical for system synchronization: if clock does not

arrive on time to each block depending on its location within the data-path, all

instruction flow gets wrong.

Clock distribution and Clock pin placement are design placement dependent,

so every new place and route run requires a new clock tree design.

Figure 3.12 shows a sample run of the clock tree generation:

Integrated Circuit Design Using Open Cores and Design Tools

74 http://www.sciencepublishinggroup.com

Figure 3.12 Sample run of the clock tree generation.

Hardware design in high-performance applications such as communications,

wireless infrastructure, servers, broadcast video, and test and measurement

equipment is becoming increasingly complex as systems integrate more

functionality and require ever-increasing levels of performance. This trend

extends to the board-level clock tree that provides reference timing for the

system. A ―one size fits all‖ strategy does not apply when it comes to clock tree

design. Optimizing the clock tree to meet both performance and cost

requirements depends on a number of factors, including the system architecture,

integrated circuit (IC) timing requirements (frequencies, signal formats, etc.)

and the jitter requirements of the end application.

3.6.8 Integration

Integration work is an inter-dependent task, since results from power, timing,

placement, and routing affect other results, so iterations have been done until

Chapter 3 System Design

http://www.sciencepublishinggroup.com 75

satisfactory results in all areas have been reached. First designs for power grid

and clock tree have been done based on the first preliminary floor-plan

delivered. As part of integration, different versions of definers’ file, one from

verification, one from Timing and one from Place & Route have been merged

into one common file to check and eliminate inconsistencies.

When cores have not been completely compatible with the bus based

architecture, wrappers have been needed, since cores are generic open source

code and customization is needed, especially for hardware integration and

in-chip communication. A Wishbone compliant wrapper has been added for: an

8K SRAM for the memory module, a 4x8 bit GPIO core, and a standard UART.

When synthesizing at top level some signal and bus inconsistencies arose:

missing pins, incompatible bus widths, and unreferenced instantiations, among

others.

Most Verilog sources have gone under editing and current control version is

maintained for code consistency since it is critical for integration.

When integrating at chip level, hardware hierarchy has been redefined: block

level is the open source for each individual block; CPU level is the unit build by

interconnecting the individual blocks; OR1200 level is the processor built with

CPU, memories, debug, and system units; SoC level is the system built with

OR1200 processor, SRMA, ROM, GPIO, UART, power grid, and clock tree.

Tables 3.13 and 3.14 show details of the tasks performed and results obtained

during the last two rounds of integration.

Integrated Circuit Design Using Open Cores and Design Tools

76 http://www.sciencepublishinggroup.com

Table 3.13 Tasks and results, 7th round of synthesis and integration.

Cluster Tasks/Problems/Results

P&R

Preliminary floor-plan has been delivered for power grid design. To be final it needs: resize

IMMU cache, consider 30% of interleaving space for routing, clock and power lines. Do block

placement re-runs with different aspect ratio for each block, until better area utilization is

achieved.

Timing Worst slack time at -800ps over a 4ns period. That leads to a frequency of 208 MHz.

Top level

synthesis

Synthesis script and netlist for OR1200 top level: ready. Synthesized OR1200_top.v, net-list

generated. To do: re-synthesize to be consistent with updated defines file, due to

inconsistencies in source files.

Integration

Different versions, one from verification, one from Timing and one from Place & Route of

definers’ file should merge into one common file. Example inconsistencies:

"OR1200_ARTISAN_SSP" has been commented out, `define OR1200_ASIC is commented

out in one version, FPU related macros to be removed.

Verification

Verification

for Power

Verification is complete with the new Verilog files, re-do when definers’ file is common to all

clusters. Use SAIF from Synopsys (1st option, for tool compatibility) or VCD from Model-

Sim to write out activity factor, for a given timing window of simulation.

SAIF: forward_saif file required for Model-Sim to generate a backward_saif, the required

output file

VCD: To write out VCD: Read DC synthesized net-list into Model-Sim. Write out a VCD

from Model-Sim from the designed test bench using time window which power numbers are

going to be generated; zip VCD: "zip -r DESIGN.vcd.zip DESIGN.vcd"

To convert between formats: Invoke Synopsys DC and use "vcd2saif" command

Source

Wrappers are written for SRMA, GPIO, and UART. These blocks, along with OR1200, will

build the SoC top level.

UART and GPIO connect to the data wishbone of the processor. New pins created for GPIO

wrapper: aux_i, ext_pad_i, ext_pad_o, ext_padoe_o, clk_pad_i, For UART: int_o, stx_pad_o,

srx_pad_i, rts_pad_o, cts_pad_i, dtr_pad_o, dsr_pad_i, ri_pad_i, dcd_pad_i

SRAM: Wishbone compliant wrapped 8K SRAM memory module. No syntax errors. Needs

functional verification, run design compiler to get the gate level Verilog.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 77

Table 3.14 Tasks and results, 8th round of synthesis and integration.

Cluster Tasks/Problems/Results

P&R
Re-run the global P&R scripts, since the floor-plan has changed significantly. All of the objects

are placed. Rebuild each using synopsis/icc/2010 and make the OR1200_top library.

Power

As Verilog source files change, new SDC files for the new net-lists are needed for each block.

After generating sdc files for each block, check for consistency among the gate.v net-list and

new sdc file.

Upload new files in the corresponding folder because existing scripts take them from there.

Results from last run of power analysis are shown in a table below.

Needs from Global P&R for Power IR drop analysis - Due to the resistance of the interconnects

in power network, there is a voltage drop -:

Add code lines for power grid

IOs still not hooked up in the milky way

Check all blocks place pins in M3 and M4.

Hook up the IO pads to the power rail, to get info about external source of power rails

Modules should be power routed in M4 and hooked up to the power grid using via 4-5

Insert de-coupling capacitor filler cells in empty spaces: within individual modules and in the

full chip level between modules

Design Rule Check should be executed after hooking up power routes

Timing

Final run: squeeze out as much extra timing as possible. Reference to:

For each pass-through in a critical path, a log has been used to show the average path slack,

average time for the pass-through, and the number of times that pass-through appears in a

critical path. Locate the pass-through routes in each block that occupy a good amount of time

in a critical path to tighten while also locating a path with slack to give that you can relax.

Due to changes in defines file between r6 and r7, the timing became a little worse, now at

200MHz. Some pins of debug unit and control unit are causing the problem. These pins pop up

only in this release, probably due to changing of the define file.

Integration Design decision to make: where and how to put the power grid on blocks?

Source

Defines file at processor top level was modified to meet requirements from: cache memory

blocks (`define OR1200_ASIC and `define OR1200_ARTISAN_SSP 0), register file block

(Type of register file RAM: `define OR1200_RFRAM_GENERIC), wishbone bus

(OR1200_CLKDIV_4_SUPPORTED, This will allow us to use 50 MHz for the external

wishbone bus.), Power management unit (`define OR1200_PM_IMPLEMENTED), and

eliminated references to floating process unit since it is not implemented.

3.7 Design Evaluation

This system design was completed through the stages of the design. The

hardware architecture was synthesized with Synopsys Design Compiler using

TSMC Physical Libraries for 180µm technology. RAM and ROM arrays were

Integrated Circuit Design Using Open Cores and Design Tools

78 http://www.sciencepublishinggroup.com

built with Artisan Memory Generators. Place and Route, Clock Tree synthesis

and IO Ring design were realized with Synopsys IC Compiler. Power analysis

and power grid design was made with Prime Time-Px.

Source cores -Processor, Peripherals, and on-chip Communication Bus- are

synthesizable cores from OpenCores.org.

Here are presented the resulting design parameters:

Timing Analysis was made during synthesis process. Timing parameters like

system clock frequency, bus clock frequency, and port clock frequency are

implementation dependent only. Output update rate considers n data samples

per waveform cycle. Table 3.15 shows operating frequencies per block group.

Table 3.15 Operating Frequencies.

Concept Operating Frequency

System Clock 190 MHz

Wishbone bus clock 47.5 MHz

GPIO, 8 bit data L&S 5.94 MHz

Output data update rate (48/n) MHz

Execution times were obtained from simulations of the application software

and from actual execution times on a development board –the LM3S6965-.

Application functions are grouped to present their execution times: Parameter

set up function gets the operation parameters from user, and generates related

data; Data processing function creates temporary and output table generation

processing two waveforms -frequencies f1 and f2 -, 32 samples each.

An example where f2= 4f1 is used. Output update function refers to signal

generation - sending waveform data samples to output port-, and corresponds to

1 cycle for addressing, 1 cycle for load from memory, and two cycles for store

Chapter 3 System Design

http://www.sciencepublishinggroup.com 79

in parallel port. Execution times marked with * do not impact maximum output

frequency since they are executed during system configuration or data

processing, i.e. before signal generation begins.

Table 3.16 Execution Times.

Function Clock cycles Exec time (ns)

Parameters setup, 8 parameters, 4 cycles each 4 x 8 168

Data processing for temporary tables 2 (4 x 32) 1347

Data processing for output table 5(32)(f2 /f1) 3368

Output update 4 21

Delivered Signals The system can deliver any mix of sine, triangle and

saw-tooth waveforms with different frequencies in single or superimposed

patterns.

Power analysis Power analysis was made for individual blocks then grouped

for simplicity. Power values in Table 3.17 consider full throttle operation for that

group of blocks and % of total power is calculated considering activity factor.

Table 3.17 Power Consumption By Block Group.

Block Power, Watts % of total power

Processor 0.176965 52.3

Memories 0.145400 42.97

Peripherals 0.006385 1.887

Bus 0.009620 2.843

Table 3.18 Area Use By Block Group.

Block Area, (mm2) % of chip area

Processor 1.4866 25.73

8K IC RAM 0.9824 17.01

8K DC RAM 0.9736 16.85

256 bytes ROM 0.0212 0.37

Peripherals 0.0522 0.90

Integrated Circuit Design Using Open Cores and Design Tools

80 http://www.sciencepublishinggroup.com

Bus & Interconnect 1.4694 25.44

IO Ring 0.7912 13.70

Areas The minimum total and interconnect areas were achieved by varying

the aspect ratio of major blocks: memory and processor cores. Area use per

block group is shown in Table 3.18.

3.8 Application Software

Based on the hardware specifications, the application software is developed

including start up and load procedure, sine/triangle/saw tooth waveform's data

storage, configuration and operation setting, and frequency synthesis process

using the novel methodology created for this application.

Separate application software versions for development board and IC are kept

due to differences in hardware resources.

Board version is an extended functionality version where hardware resources

are only limited by the board features.

The SoC version is called the standard version: it has less functionality than

the board's due to area budget, processor, and open source restrictions.

3.8.1 Program Flow

Table 3.19 shows a simplification of the application flow by listing only the

main tasks; secondary tasks as data protection, data scaling and frequency

synthesis details are not shown.

Chapter 3 System Design

http://www.sciencepublishinggroup.com 81

Table 3.19 Application Program Steps.

1. Configure General Purpose I/O port

2. Get configuration and operation parameters

3. Calculate time separation between data and shift factor for data extraction

4. Prepare temporary and output tables for requested mode

4.1 Mode 1: 1 8-bit table, single data, for 1 frequency signal output

4.2 Mode 2: 1 16-bit table, inter lapped double data, for two frequency signal outputs

4.3 Mode 3: 1 8-bit table, superimposed data, for two frequencies on 1 signal output

5. Configure four 8-bit GPIO port for output signals.

6. Send data samples for sine signal to output port, with a load-from-table/store-to-port cycle

7. Update output port continuously while waiting for stop signal

8. Restart operation to get new configuration parameters

3.8.2 Standard Version

A standard version of the application program has been developed to run on

OR1200 based architecture; this version is the foundation for the SoC design

and implementation. The three waveforms can be delivered to output channels

and dual superimposed frequencies are included if frequencies are exact

multiples, due to in-chip memory limitations. To be interrupted during

operation using master reset only. Maximum output frequency is limited by the

timing constraints of the available physical libraries for implementation and the

timing optimization of the set of processor source files. Standard version takes

less than 1 Kbytes of data RAM and less than 2 Kbytes of instruction RAM.

Table 3.20 shows a description of the routines in the standard version.

Table 3.20 Routine List and Description, Standard Version.

Routine Description

Calculate Data

Separation

Desired output frequency and number of voltage steps determine how many data points

will be extracted from the original sine table in order to construct desired output signal.

Two data separation parameters are needed for operation modes 2 and 3.

Calculate base

time

According to desired frequency and number of voltage steps, there is a base times that

indicates the time between data points are sent to output port.

Integrated Circuit Design Using Open Cores and Design Tools

82 http://www.sciencepublishinggroup.com

Routine Description

Create Table-

Mode1

Extract data from original sine table needed to construct 1 output signal, 1 single

frequency: each 8-bit data from original sine table is stored as the 8 least significant bits of

the 32-bit output port.

Create Table-

Mode2

Extract data from original sine table needed to construct two output signals, two separated

frequencies: if two 8-bit output ports can be stored at the same time with 32-bit data, two

data points from original sine tables must be concatenated before stored in buffer memory

table.

Create Table-

Mode3

Extract data from original sine table needed to construct 1 output signal, two superimposed

frequencies: data points for different frequencies should be added to achieve

superimposition.

Output Signal

Generation

Continuous, uninterrupted loop, for loading data from buffer memory and storing it on

output ports. No memory other than buffer is read, no instructions other than those for

signal generation are executed.

Start/Stop

external

interrupt

Start/Stop button is enabled as an external interrupt in two execution moments: at startup

to be ready for accepting configuration and operation parameters, and during Output Signal

Generation routine to stop signal.

Timer interrupt

generation

Within Output Signal Generation routine: When low frequency output is desired, a timer is

used to update data to outputs at a base time determined by Calculate Base routine. For

high frequencies time is achieved by cycle and instruction count.

See Appendix A1 for Application software C code, standard version.

3.8.3 Extended Version

The extended version of the application program was developed to run on an

ARM9 or Cortex-M3 based development board. A functional implementation of

this version is presented in chapter 5. Extended functionality is added, such as

delivering data via an USB port for further analysis of monitored or stored data,

mixing different waveforms in a superimposed signal for more controlled

experimental environments and an interactive user interface for configuration

and operation. Data tables for the three signal wave forms (sine, triangle and

saw tooth) can be displayed at start-up for demonstration purposes of the novel

frequency synthesis methodology to show the frequency superposition effect.

Extended version takes less than 4 Kbytes of data RAM - 1 Kbytes for base data

and 3 Kbytes for temporary and final data-, and less than 3 Kbytes of instruction

Chapter 3 System Design

http://www.sciencepublishinggroup.com 83

RAM. Although the Extended version has additional functionality it fits in the

original SoC design which has separated RAM blocks of 8KB of data RAM and

8KB of instruction RAM.

See Appendix A2 for Application software in C code, extended version.

	martha.lopez@udem.edu 35
	martha.lopez@udem.edu 36
	martha.lopez@udem.edu 37
	martha.lopez@udem.edu 38
	martha.lopez@udem.edu 39
	martha.lopez@udem.edu 40
	martha.lopez@udem.edu 41
	martha.lopez@udem.edu 42
	martha.lopez@udem.edu 43
	martha.lopez@udem.edu 44
	martha.lopez@udem.edu 45
	martha.lopez@udem.edu 46
	martha.lopez@udem.edu 47
	martha.lopez@udem.edu 48
	martha.lopez@udem.edu 49
	martha.lopez@udem.edu 50
	martha.lopez@udem.edu 51
	martha.lopez@udem.edu 52
	martha.lopez@udem.edu 53
	martha.lopez@udem.edu 54
	martha.lopez@udem.edu 55
	martha.lopez@udem.edu 56
	martha.lopez@udem.edu 57
	martha.lopez@udem.edu 58
	martha.lopez@udem.edu 59
	martha.lopez@udem.edu 60
	martha.lopez@udem.edu 61
	martha.lopez@udem.edu 62
	martha.lopez@udem.edu 63
	martha.lopez@udem.edu 64
	martha.lopez@udem.edu 65
	martha.lopez@udem.edu 66
	martha.lopez@udem.edu 67
	martha.lopez@udem.edu 68
	martha.lopez@udem.edu 69
	martha.lopez@udem.edu 70
	martha.lopez@udem.edu 71
	martha.lopez@udem.edu 72
	martha.lopez@udem.edu 73
	martha.lopez@udem.edu 74
	martha.lopez@udem.edu 75
	martha.lopez@udem.edu 76
	martha.lopez@udem.edu 77
	martha.lopez@udem.edu 78
	martha.lopez@udem.edu 79
	martha.lopez@udem.edu 80
	martha.lopez@udem.edu 81
	martha.lopez@udem.edu 82
	martha.lopez@udem.edu 83
	martha.lopez@udem.edu 84
	martha.lopez@udem.edu 85
	martha.lopez@udem.edu 86
	martha.lopez@udem.edu 87
	martha.lopez@udem.edu 88
	martha.lopez@udem.edu 89
	martha.lopez@udem.edu 90
	martha.lopez@udem.edu 91
	martha.lopez@udem.edu 92
	martha.lopez@udem.edu 93
	martha.lopez@udem.edu 94

